
SQuORE: a new approach to software project assessment.

Boris Baldassari
SQuORING Technologies

76, Alles Jean Jaurs,
31000 Toulouse - France

www.squoring.com
boris.baldassari@squoring.com

July 10, 2013

Abstract

Quality has a price. But non-quality is even more expensive. Knowing the cost and consequences of
software assets, being able to understand and control the development process of a service, or quickly
evaluating the quality of external developments are of primary importance for every company relying on
software. Standards and tools have tried with varying degrees of success to address these concerns, but
there are many difficulties to be overcome: the diversity of software projects, the measurement process –
from goals and metrics selection to data presentation, or the user’s understanding of the reports. These
are situations where the SQuORE business intelligence tool introduces a novel decision-based approach to
software projects quality assessment by providing a more reliable, more intuitive, and more context-aware
view on quality. This in turn allows all actors of the project to share a common vision of the project
progress and performance, which then allows efficient enhancing of the product and process. This position
paper presents how SQuORE solves the quality dilemma, and showcases two real-life examples of indus-
trial projects: a unit testing improvement program, and a fully-featured software project management model.

Key words: software quality, key performance indicators, trend analysis, measurement, quality models,
process evaluation, business intelligence, project management.

1 Introduction

Despite an increasing interest in software quality,
many still think about quality achievement as an
expensive and unproductive process. On the other
hand, as Shaw [23] pointed out a few years earlier,
the software engineering discipline is currently in the
process of maturing: in the past decade, new meth-
ods and new processes have grown, standards have
been published, and the many years of experience
gathered in the field brought much feedback and a

new maturity to the discipline. The time has come
for a new era in business intelligence [5] for software
projects.

In the second section of this paper, we lay down the
ground foundations of our approach to software mea-
surement and present the state of practice, along with
some terms and concepts about software development
quality and management. In section three, we discuss
the SQuORE approach to software projects assess-
ment, with its features and benefits. Section four

1

http://www.squoring.com
mailto:boris.baldassari@squoring.com

further expands the scope of quality assessment by
showing two real-life implementations that demon-
strate the use of SQuORE, with unit testing priori-
tisation and project- and schedule dashboards and
models.

2 State of practice

2.1 The cost of failures

There are many examples of software project failures,
and their associated costs – either in human or finan-
cial losses. All of them originate from non-quality
or lack of control on development. Some well-known
example bugs in the past decades include:

• Therac-25: six deaths before beeing fixed, took
two years to diagnose and fix [15].

• Mars Climate Orbiter: race conditions on bus
priority, system rebooted continuously and robot
eventually crashed[19].

• Patriot missile target shifted 6 meters every hour
due to float precision bug. 28 soldiers killed in
Dhahran [25].

• Ariane 5 infamous buffer overrun crash due to
abusive reuse of Ariane 4 software[16]: 500 mil-
lions $ pure loss.

• AT & T failure of 1990: software upgrade of
switch network led to a 9 hours crash, traced
back to a missing break[20]. 60 Million $ lost
revenue.

According to a study conducted by the U.S. De-
partment of Commerce’s National Institute of Stan-
dards and Technology (NIST), the bugs and glitches
cost the U.S. economy about 59.5 billion dollars a
year[21]. The Standish Group CHAOS 2004 [24] re-
port shows failure rates of almost 70%.

2.2 Standards for software products
and processes

Many quality-oriented standards and norms have
been published in the last decades, some focusing on

product quality (from Boehm [1] and McCall [18],
further simplified and enhanced by ISO 9126 [9]),
while other rather consider the process quality (e.g.
ISO/IEC 15504 [6] and CMMi [2]). More recently,
two quality assessment standards have been devel-
oped: SQALE [14, 13], a generic method indepen-
dent of the language and source code analysis tools,
mainly relying on technical and design debts, and ISO
SQuARE [7], the successor of ISO 9126, which is still
being developed. Furthermore, some domains have
their own de-facto standards: HIS and ISO 26262 [8]
for the automotive industry, or DO-178 [22] for the
aeronautics and critical embedded systems.

But some objections have been opposed to estab-
lished standards, because:

• they may be seen as mere gut-feeling and opin-
ions from experts, as pointed out by Jung et al
[10] for the ISO 9126, and

• they dont fit well every situation and view on
quality, as they are rather scope-fixed [11].

Another point, also related to the complexity and
diversity of software projects, is that published stan-
dards dont provide any pragmatic measures or tool
references, which leads to misunderstanding and mis-
conceptions of what is measured as an example, con-
sider the thousands of different ideas and concepts
behind the Mean Time To Failure metric [12].

2.3 Metrics for software quality mea-
surement

There is a huge amount of software-oriented met-
rics available in the literature. Examples of weidly-
used metrics include McCabe’s cyclomatic complex-
ity for control flow[17], Halstead’s complexity for data
flow[4], size or coupling measures. Each measure is
supposed to characterise some attributes of software
quality, and they have to be put together to give the
complete picture.

Another mean to assess software quality is the
number of non-conformities to a given reference. As
an example, if naming or coding conventions or pro-
gramming patterns have been decided, then any vi-
olations of these rules is supposed to decrease the

2

quality, because it threatens some of the characteris-
tics of quality, like analysability (for conventions), or
reliability (for coding patterns).

The concept of technical debt, coined by Ward Cun-
ningham in 1992 [3] and gaining more and more in-
terest nowadays, can be considered as the distance
to the desired state of quality. In that sense, it is
largely driven by the number and importance of non-
conformities.

The trend of software measurement globally
tends to multi-dimensional analysis [12]: quality or
progress of a software project or product is a compos-
ite of many different measures, reflecting its different
characteristics or attributes. The next step is the way
information can be aggregated and consolidated.

3 Principles of SQuORE

The purpose of SQuORE is to retrieve information
from several sources, compute a consolidation of the
data, and show an optimised report on software or
project state. The rating of the application is dis-
played on a common, eye-catching 7-steps scale which
allows immediate understanding of the results, as
shown in Figure 1.

Figure 1: The 7-levels SQuORE rating

3.1 Architecture

SQuORE analysis process can be broken down in
three separate steps: data providers that take care
of gathering inputs from different sources, the en-
gine, which computes the consolidation and rating
from the base measures gathered by data providers,
and the dashboard to present information in a smart
and efficient way.

3.2 Data Providers

As stated in our introduction, there are nowadays
many tools available, each one having a specific do-
main of expertise and an interesting, but partial, view
on quality. SQuORE brings in the glue and consis-
tency between them all, by importing this informa-
tion any type of input is accepted, from xml or csv
to Microsoft binary files and processing it globally.

The SQuORE analyser runs first. It is fast, does
not need third-party dependencies, and constitutes
a tree of artefacts corresponding to the items mea-
sured: source code, tests, schedule, hardware compo-
nents, or more generally speaking any kind of item
able to represent a node of the project hierarchy. In
addition, the SQuORE engine adds the findings and
information from external tools, attaching them to
the right artefacts with their values and meaning.

3.3 Data Consolidation

Figure 2: Artefacts and Quality Trees

Once the base measures have been collected,
SQuORE computes derived measures as defined in
the quality model and builds the quality hierarchy
for every node of the artefact tree, as shown in Fig-
ure 2.

3

3.3.1 Quality Models

Quality models define how data are aggregated and
summarised from the leaves up to the root artefact
(usually the application or project): base measures
collected by data providers are transformed into de-
rived measures and associated to the different at-
tributes of quality.

As stated before, there is no silver bullet for quality
models[11]: one has to tailor the assessment method,
considering the specific needs and goals of the de-
velopment. In many cases existing models1 consti-
tute a good start, and they should simply be fine-
tuned to fit most common needs. But for specific or
uncommon situations, SQuORE proposes everything
one would need in such a task, from basic operations
on measures to complex, cross-tree computations.

3.3.2 Metris, Scales, Indicators

Raw measures give the status of a characteristic,
without qualitative judgement. Indicators give this
information, by comparing the measure to a scale.
Scales define specific levels for the measure and their
associated rating, which allow fine-tuning the model
with specific thresholds and weights. As an example,
the well-known cyclomatic complexity metric [17] for
functions could be compared to a four levels scale,
such that:

• from 0 to 7 rating is A (very good) and weight
for technical debt is 0,

• from 7 to 15 rating is B (ok) and weight is 2,

• from 15 to 25 rating is C (bad) and weight is 4,

• above 25 rating is D (very bad) and weight is 16
because you really should refactor it.

Considering this, the cyclomatic complexity indicator
gives at first sight the status of the intended meaning
of the metric.

1The default SQuORE setup proposes several models and
standards: SQALE, ISO 9126 Maintainability and Automotive
HIS are available right out-of-the-box.

3.3.3 Action Items

Quite often, the dynamics of development depend on
many different factors: as an example, if a function is
quite long, has an important control complexity and
many non-conformities, and a poor comment rate,
then it should be really looked at although none of
these individual indicators, taken separately, would
be worse rising it. Action items serve this goal: the
quality officer can define triggers, which can be any
combination of indicators on the artefact tree, and
SQuORE will create action items if one or all criteria
are met. A helpful description about the problem and
its resolution is displayed as well. Because they can
be applied on any artefact type, the possibilities of
action items are almost limitless. They are often the
best way to implement experience-based heuristics,
and automate long, tedious, and error-prone checking
processes.

3.4 From Quality Assessment to
Project Monitoring

Quality assessment, as a static figure, is the first step
to project control: if you don’t know where you are,
a map won’t help. The next step is to monitor the
dynamics of the project, by following the evolution
of this static status across iterations – this can be
thought of as search-based decision making, as de-
scribed by Hassan et al. in [5]. SQuORE proposes
for this several mechanisms:

• Trends show at first sight how an artefact or at-
tribute of quality did evolve.

• Drill-downs, sorts and filters help identify
quickly what artefacts actually went wrong.

• The quality view helps understand why the rat-
ing went down, and what should be done to get
it back to a good state.

• Action items help identifying complex evolution
schemas, by specifying multiple criteria based on
artefacts, measures and trends.

4

4 Use Cases

4.1 General Feedback

From our experience, there are some common reac-
tions to a SQuORE evaluation:

• People are able to quickly identify issues and are
not overwhelmed by the amount of information,
which allows finding in a few minutes serious is-
sues like missing breaks. Specialised tools are
indeed able to uncover such issues, but due to
the sheer volume of results they generate, it is
not uncommon for end users to miss important
results.

• People are glad to see that their general feeling
about some applications is verified by pragmatic
evidence. This re-enforces the representativeness
of measurement and puts facts on words2.

• Developers are concerned by their rating: the
simple, eye-catching mark is immediately recog-
nised as a rating standard. Further investiga-
tions help them understand why it is so, and
how they could improve it3.

4.2 Unit Test Monitoring

One of our customers needed to know what parts of
software had to be tested first for maximum efficiency.
Until now, the process was human-driven: files to be
tested were selected depending on their history and
recent changes, complexity of their functions, and
their number of non-conformities. The team had de-
veloped home-grown heuristics gathered from years of
experience, with defined attributes and thresholds.

We built a model with inputs from two external
tools, QAC and Rational Test Real Time, and the
SQuORE analyser. From these, we defined four main
measures: non-conformities from QAC, RTRT, and
SQuORE, plus cyclomatic complexity. Weights and
computations were then selected in such a way that
the files would get exponential-like ratings: as an

2In other words: I told you this code was ugly!
3In other words: I suspected this part needed refactoring.

example, if a file had only one of these main mea-
sures marked as bad, it would get a weight of 2. For
two, three or four bad measures, it would get resp. a
weight of 8, 16 or 32. This allowed quickly identifying
the worst files in the artefact hierarchy.

Figure 3: Artefact filters

Folder ratings were computed according to the
number of bad files they had under their hierarchy
and their relative badness, which allowed focusing on
worst components easily by sorting the artefact tree
by folder ratings.

Action items were setup for the files that really
needed to be checked, because they had either really
bad ratings, or cyclomatic complexities or number of
non-conformities that exceeded by far the defined cri-
teria. Such action items allowed identifying problem-
atic files hidden in hierarchies of good or not-so-bad
files.

We were able to achieve the following goals:

• Define a standardised, widely-accepted mean of
estimating testing efforts.

• Reproduce some gut-feeling mechanisms that
had been thoroughly experienced and fine-tuned
along the years by human minds, without having
been explicitly formalised until now.

5

Dashboard graphs were setup to get immediate
visual information on the rate of bad files in com-
ponents. The evolution of component ratings also
helped to identify parts of software that tended to
entropy or bad testability, and take appropriate ac-
tions with development teams.

4.3 Project Monitoring

Figure 4: Example scorecards

Another experience encompassed a full software
project monitoring solution: the customer wanted
to have a factual and unified vision on the overall
progress of his developments.

SQuORE analyser was used for the source code
quality assessment. Additional data providers were
defined to retrieve data from change management,
tests, and scheduling (as the number of open/closed
tasks) tools.

Considering these entries, we defined the following
axes in the quality model, as shown in Figure 4:

• Are the quality objectives respected? – based on
the ISO 9126 maintainability assessment of code.

• Are we on-time? – an agile-like reporting on
tasks completion.

• Are we overwhelmed by new issues? – the
amount of defect reports waiting for treatments.

• Was the product deteriorated? – which reflects
the state of test coverage and success: regression,
unit, and system tests.

These axes are summarised in a global indicator
(Figure 5), showing the composite progress of the
project. In this case, we chose to take the worst sub-
characteristic as the global rating to directly identify
problems on progress.

Action items were developed to identify:

• Parts of code that had a bad maintainability rat-
ing, were not enough covered by tests, and got
many defect change requests.

• Schedule shifts, when the number of opened
tasks was too high for the remaining time and
many change requests were incoming (opened).

Figure 5: Project Quality model

The Jenkins continuous integration server was used
to execute SQuORE automatically on a daily basis.
Automatic retrieval of data and analysis was needed
to ensure reliability and consistency of data – the con-
stant availability being one of the keys to meaningful
data.

Dashboards were defined for the main concerns of
the project: evolution of the maintainability rating
on files, evolution of change requests treatment, and
failing tests. The scheduling information was repre-
sented using burn-down and burn-up charts, and dot
graphs with trends and upper- and lower- limits.

6

We were able to:

• Provide real-time information about current
state and progress of project. Web links to the
Mantis change management system even allowed
knowing exactly what actions are on-going.

• Get back confidence and control on project
to team leaders and developers by enabling a
crystal-clear, shared and consistent vision.

References

[1] B. W. Boehm, J. R. Brown, and M. Lipow.
Quantitative evaluation of software quality. In
Proceedings of the 2nd international conference
on Software engineering, pages 592–605, San
Francisco, California, United States, 1976. IEEE
Computer Society Press.

[2] CMMI Product Team. CMMI for Development,
Version 1.3. Technical report, Carnegie Mellon
University, 2010.

[3] Martin Fowler. Martin Fowler on Technical
Debt, 2004.

[4] Maurice H. Halstead. Elements of Software Sci-
ence (Operating and programming systems se-
ries). Elsevier Science Inc., New York, NY, USA,
1977.

[5] Ahmed E Hassan and Tao Xie. Software In-
telligence: The Future of Mining Software En-
gineering Data. In Proc. FSE/SDP Workshop
on the Future of Software Engineering Research
(FoSER 2010), pages 161–166. ACM, 2010.

[6] ISO IEC. Iso/iec 15504-1 – information tech-
nology – process assessment. Software Process:
Improvement and Practice, 2(1):35–50, 2004.

[7] ISO IEC. Iso/iec 25000 – software engineering –
software product quality requirements and eval-
uation (square) – guide to square. Systems En-
gineering, page 41, 2005.

[8] ISO. ISO/DIS 26262-1 - Road vehicles Func-
tional safety Part 1 Glossary. Technical report,
International Organization for Standardization
/ Technical Committee 22 (ISO/TC 22), 2009.

[9] ISO/IEC. ISO/IEC 9126 – Software engineering
– Product quality. 2001.

[10] Ho-Won Jung, Seung-Gweon Kim, and Chang-
Shin Chung. Measuring software product qual-
ity: A survey of iso/iec 9126. IEEE Software,
21:88–92, 2004.

[11] Stephen H. Kan. Metrics and Models in Software
Quality Engineering. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2nd edi-
tion, 2002.

[12] C Kaner and Walter P. Bond. Software engineer-
ing metrics: What do they measure and how do
we know? In 10Th International Software Met-
rics Symposium, METRICS 2004, pages 1–12,
2004.

[13] Jean-louis Letouzey. The SQALE method for
evaluating Technical Debt. In 2012 Third Inter-
national Workshop on Managing Technical Debt,
pages 31–36, 2012.

[14] Jean-louis Letouzey and Thierry Coq. The
SQALE Analysis Model An analysis model com-
pliant with the representation condition for as-
sessing the Quality of Software Source Code. In
2010 Second International Conference on Ad-
vances in System Testing and Validation Life-
cycle (VALID), pages 43–48, 2010.

[15] Nancy Leveson and Clark S. Turner. An Investi-
gation of the Therac-25 Accidents. IEEE Com-
puter, 26(7):18–41, 1993.

[16] J.L. Lions. ARIANE 5 Flight 501 failure. Tech-
nical report, 1996.

[17] TJ McCabe. A complexity measure. Software
Engineering, IEEE Transactions on, (4):308–
320, 1976.

7

[18] J.A. McCall. Factors in Software Quality: Pre-
liminary Handbook on Software Quality for an
Acquisiton Manager. Information Systems Pro-
grams, General Electric Company, 1977.

[19] National Aeronautics and Space Administration.
Mars Climate Orbiter Mishap Investigation Re-
port. Technical report, National Aeronautics
and Space Administration, Washington, DC,
2000.

[20] Peter G. Neumann. Cause of AT&T network
failure. The Risks Digest, 9(62), 1990.

[21] National Institute of Standards and Department
of Commerce. Technology (NIST). Software er-
rors cost u.s. economy $59.5 billion annually,
2002.

[22] RTCA. DO-178B: Software Considerations in
Airborne Systems and Equipment Certification.
Technical report, Radio Technical Commission
for Aeronautics (RTCA), 1982.

[23] Mary Shaw. Prospects for an engineer-
ing discipline of software. IEEE Software,
(November):15–24, 1990.

[24] The Standish Group International Inc. The
Standish Group International Inc. Chaos Tech-
nical report. Technical report, 2004.

[25] United States General Accounting Office. Pa-
triot Missile Defense: Software Problem Led to
System Failure at Dhahran , Saudi Arabia. Tech-
nical report, United States General Accounting
Office, 1992.

8

	Introduction
	State of practice
	The cost of failures
	Standards for software products and processes
	Metrics for software quality measurement

	Principles of SQuORE
	Architecture
	Data Providers
	Data Consolidation
	Quality Models
	Metris, Scales, Indicators
	Action Items

	From Quality Assessment to Project Monitoring

	Use Cases
	General Feedback
	Unit Test Monitoring
	Project Monitoring

